Metamath Proof Explorer


Theorem rexdifi

Description: Restricted existential quantification over a difference. (Contributed by AV, 25-Oct-2023)

Ref Expression
Assertion rexdifi x A φ x B ¬ φ x A B φ

Proof

Step Hyp Ref Expression
1 df-rex x A φ x x A φ
2 df-ral x B ¬ φ x x B ¬ φ
3 nfa1 x x x B ¬ φ
4 simprl x x B ¬ φ x A φ x A
5 con2 x B ¬ φ φ ¬ x B
6 5 sps x x B ¬ φ φ ¬ x B
7 6 com12 φ x x B ¬ φ ¬ x B
8 7 adantl x A φ x x B ¬ φ ¬ x B
9 8 impcom x x B ¬ φ x A φ ¬ x B
10 4 9 eldifd x x B ¬ φ x A φ x A B
11 simprr x x B ¬ φ x A φ φ
12 10 11 jca x x B ¬ φ x A φ x A B φ
13 12 ex x x B ¬ φ x A φ x A B φ
14 3 13 eximd x x B ¬ φ x x A φ x x A B φ
15 14 impcom x x A φ x x B ¬ φ x x A B φ
16 1 2 15 syl2anb x A φ x B ¬ φ x x A B φ
17 df-rex x A B φ x x A B φ
18 16 17 sylibr x A φ x B ¬ φ x A B φ