Metamath Proof Explorer


Theorem rexdifpr

Description: Restricted existential quantification over a set with two elements removed. (Contributed by Alexander van der Vekens, 7-Feb-2018) (Proof shortened by Wolf Lammen, 15-May-2025)

Ref Expression
Assertion rexdifpr x A B C φ x A x B x C φ

Proof

Step Hyp Ref Expression
1 anass x A x B x C φ x A x B x C φ
2 eldifpr x A B C x A x B x C
3 3anass x A x B x C x A x B x C
4 2 3 bitri x A B C x A x B x C
5 4 anbi1i x A B C φ x A x B x C φ
6 df-3an x B x C φ x B x C φ
7 6 anbi2i x A x B x C φ x A x B x C φ
8 1 5 7 3bitr4i x A B C φ x A x B x C φ
9 8 rexbii2 x A B C φ x A x B x C φ