Metamath Proof Explorer


Theorem rexdifpr

Description: Restricted existential quantification over a set with two elements removed. (Contributed by Alexander van der Vekens, 7-Feb-2018)

Ref Expression
Assertion rexdifpr x A B C φ x A x B x C φ

Proof

Step Hyp Ref Expression
1 eldifpr x A B C x A x B x C
2 3anass x A x B x C x A x B x C
3 1 2 bitri x A B C x A x B x C
4 3 anbi1i x A B C φ x A x B x C φ
5 anass x A x B x C φ x A x B x C φ
6 df-3an x B x C φ x B x C φ
7 6 bicomi x B x C φ x B x C φ
8 7 anbi2i x A x B x C φ x A x B x C φ
9 5 8 bitri x A x B x C φ x A x B x C φ
10 4 9 bitri x A B C φ x A x B x C φ
11 10 rexbii2 x A B C φ x A x B x C φ