Metamath Proof Explorer


Theorem rexdifsn

Description: Restricted existential quantification over a set with an element removed. (Contributed by NM, 4-Feb-2015)

Ref Expression
Assertion rexdifsn x A B φ x A x B φ

Proof

Step Hyp Ref Expression
1 eldifsn x A B x A x B
2 1 anbi1i x A B φ x A x B φ
3 anass x A x B φ x A x B φ
4 2 3 bitri x A B φ x A x B φ
5 4 rexbii2 x A B φ x A x B φ