Metamath Proof Explorer


Theorem rexeqbidva

Description: Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017)

Ref Expression
Hypotheses raleqbidva.1 φA=B
raleqbidva.2 φxAψχ
Assertion rexeqbidva φxAψxBχ

Proof

Step Hyp Ref Expression
1 raleqbidva.1 φA=B
2 raleqbidva.2 φxAψχ
3 2 rexbidva φxAψxAχ
4 1 rexeqdv φxAχxBχ
5 3 4 bitrd φxAψxBχ