Metamath Proof Explorer


Theorem rexeqbii

Description: Equality deduction for restricted existential quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses rexeqbii.1 A = B
rexeqbii.2 ψ χ
Assertion rexeqbii x A ψ x B χ

Proof

Step Hyp Ref Expression
1 rexeqbii.1 A = B
2 rexeqbii.2 ψ χ
3 1 eleq2i x A x B
4 3 2 anbi12i x A ψ x B χ
5 4 rexbii2 x A ψ x B χ