Metamath Proof Explorer


Theorem rexeqdv

Description: Equality deduction for restricted existential quantifier. (Contributed by NM, 14-Jan-2007)

Ref Expression
Hypothesis raleq1d.1 φ A = B
Assertion rexeqdv φ x A ψ x B ψ

Proof

Step Hyp Ref Expression
1 raleq1d.1 φ A = B
2 rexeq A = B x A ψ x B ψ
3 1 2 syl φ x A ψ x B ψ