Metamath Proof Explorer
Description: Equality inference for restricted existential quantifier. (Contributed by Mario Carneiro, 23-Apr-2015)
|
|
Ref |
Expression |
|
Hypothesis |
raleq1i.1 |
|
|
Assertion |
rexeqi |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
raleq1i.1 |
|
2 |
|
rexeq |
|
3 |
1 2
|
ax-mp |
|