Metamath Proof Explorer


Theorem rexeqif

Description: Equality inference for restricted existential quantifier. (Contributed by Glauco Siliprandi, 15-Feb-2025)

Ref Expression
Hypotheses rexeqif.1 _ x A
rexeqif.2 _ x B
rexeqif.3 A = B
Assertion rexeqif x A φ x B φ

Proof

Step Hyp Ref Expression
1 rexeqif.1 _ x A
2 rexeqif.2 _ x B
3 rexeqif.3 A = B
4 1 2 rexeqf A = B x A φ x B φ
5 3 4 ax-mp x A φ x B φ