Metamath Proof Explorer
Description: Equality inference for restricted existential quantifier. (Contributed by Glauco Siliprandi, 15-Feb-2025)
|
|
Ref |
Expression |
|
Hypotheses |
rexeqif.1 |
|
|
|
rexeqif.2 |
|
|
|
rexeqif.3 |
|
|
Assertion |
rexeqif |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rexeqif.1 |
|
2 |
|
rexeqif.2 |
|
3 |
|
rexeqif.3 |
|
4 |
1 2
|
rexeqf |
|
5 |
3 4
|
ax-mp |
|