Metamath Proof Explorer
Description: Substitution of equal classes into a restricted existential quantifier.
(Contributed by Matthew House, 21-Jul-2025)
|
|
Ref |
Expression |
|
Hypotheses |
rexeqtrdv.1 |
|
|
|
rexeqtrdv.2 |
|
|
Assertion |
rexeqtrdv |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rexeqtrdv.1 |
|
| 2 |
|
rexeqtrdv.2 |
|
| 3 |
2
|
rexeqdv |
|
| 4 |
1 3
|
mpbid |
|