Metamath Proof Explorer


Theorem rexeqtrrdv

Description: Substitution of equal classes into a restricted existential quantifier. (Contributed by Matthew House, 21-Jul-2025)

Ref Expression
Hypotheses rexeqtrrdv.1 φ x A ψ
rexeqtrrdv.2 φ B = A
Assertion rexeqtrrdv φ x B ψ

Proof

Step Hyp Ref Expression
1 rexeqtrrdv.1 φ x A ψ
2 rexeqtrrdv.2 φ B = A
3 2 rexeqdv φ x B ψ x A ψ
4 1 3 mpbird φ x B ψ