Metamath Proof Explorer


Theorem rexex

Description: Restricted existence implies existence. (Contributed by NM, 11-Nov-1995)

Ref Expression
Assertion rexex x A φ x φ

Proof

Step Hyp Ref Expression
1 df-rex x A φ x x A φ
2 exsimpr x x A φ x φ
3 1 2 sylbi x A φ x φ