Metamath Proof Explorer


Theorem rexico

Description: Restrict the base of an upper real quantifier to an upper real set. (Contributed by Mario Carneiro, 12-May-2016)

Ref Expression
Assertion rexico A B j B +∞ k A j k φ j k A j k φ

Proof

Step Hyp Ref Expression
1 simpr A B B
2 pnfxr +∞ *
3 icossre B +∞ * B +∞
4 1 2 3 sylancl A B B +∞
5 ssrexv B +∞ j B +∞ k A j k φ j k A j k φ
6 4 5 syl A B j B +∞ k A j k φ j k A j k φ
7 simpr A B j j
8 simplr A B j B
9 7 8 ifcld A B j if B j j B
10 max1 B j B if B j j B
11 10 adantll A B j B if B j j B
12 elicopnf B if B j j B B +∞ if B j j B B if B j j B
13 12 ad2antlr A B j if B j j B B +∞ if B j j B B if B j j B
14 9 11 13 mpbir2and A B j if B j j B B +∞
15 simpllr A B j k A B
16 simplr A B j k A j
17 simpll A B j A
18 17 sselda A B j k A k
19 maxle B j k if B j j B k B k j k
20 15 16 18 19 syl3anc A B j k A if B j j B k B k j k
21 simpr B k j k j k
22 20 21 syl6bi A B j k A if B j j B k j k
23 22 imim1d A B j k A j k φ if B j j B k φ
24 23 ralimdva A B j k A j k φ k A if B j j B k φ
25 breq1 n = if B j j B n k if B j j B k
26 25 rspceaimv if B j j B B +∞ k A if B j j B k φ n B +∞ k A n k φ
27 14 24 26 syl6an A B j k A j k φ n B +∞ k A n k φ
28 27 rexlimdva A B j k A j k φ n B +∞ k A n k φ
29 breq1 n = j n k j k
30 29 imbi1d n = j n k φ j k φ
31 30 ralbidv n = j k A n k φ k A j k φ
32 31 cbvrexvw n B +∞ k A n k φ j B +∞ k A j k φ
33 28 32 syl6ib A B j k A j k φ j B +∞ k A j k φ
34 6 33 impbid A B j B +∞ k A j k φ j k A j k φ