Description: Restricted existence deduced from nonempty class. (Contributed by NM, 1-Feb-2012)
Ref | Expression | ||
---|---|---|---|
Hypothesis | reximdva0.1 | ||
Assertion | reximdva0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximdva0.1 | ||
2 | n0 | ||
3 | 1 | ex | |
4 | 3 | ancld | |
5 | 4 | eximdv | |
6 | 5 | imp | |
7 | 2 6 | sylan2b | |
8 | df-rex | ||
9 | 7 8 | sylibr |