Metamath Proof Explorer


Theorem reximdva0

Description: Restricted existence deduced from nonempty class. (Contributed by NM, 1-Feb-2012)

Ref Expression
Hypothesis reximdva0.1 φ x A ψ
Assertion reximdva0 φ A x A ψ

Proof

Step Hyp Ref Expression
1 reximdva0.1 φ x A ψ
2 n0 A x x A
3 1 ex φ x A ψ
4 3 ancld φ x A x A ψ
5 4 eximdv φ x x A x x A ψ
6 5 imp φ x x A x x A ψ
7 2 6 sylan2b φ A x x A ψ
8 df-rex x A ψ x x A ψ
9 7 8 sylibr φ A x A ψ