Metamath Proof Explorer
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 10-Feb-1997) (Proof shortened by Wolf Lammen, 31-Oct-2024)
|
|
Ref |
Expression |
|
Hypothesis |
reximia.1 |
|
|
Assertion |
reximia |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
reximia.1 |
|
2 |
1
|
imdistani |
|
3 |
2
|
reximi2 |
|