Metamath Proof Explorer


Theorem reximia

Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 10-Feb-1997) (Proof shortened by Wolf Lammen, 31-Oct-2024)

Ref Expression
Hypothesis reximia.1 x A φ ψ
Assertion reximia x A φ x A ψ

Proof

Step Hyp Ref Expression
1 reximia.1 x A φ ψ
2 1 imdistani x A φ x A ψ
3 2 reximi2 x A φ x A ψ