Metamath Proof Explorer


Theorem reximssdv

Description: Derivation of a restricted existential quantification over a subset (the second hypothesis implies A C_ B ), deduction form. (Contributed by AV, 21-Aug-2022)

Ref Expression
Hypotheses reximssdv.1 φ x B ψ
reximssdv.2 φ x B ψ x A
reximssdv.3 φ x B ψ χ
Assertion reximssdv φ x A χ

Proof

Step Hyp Ref Expression
1 reximssdv.1 φ x B ψ
2 reximssdv.2 φ x B ψ x A
3 reximssdv.3 φ x B ψ χ
4 2 3 jca φ x B ψ x A χ
5 4 ex φ x B ψ x A χ
6 5 reximdv2 φ x B ψ x A χ
7 1 6 mpd φ x A χ