Metamath Proof Explorer


Theorem rexin

Description: Restricted existential quantification over intersection. (Contributed by Peter Mazsa, 17-Dec-2018)

Ref Expression
Assertion rexin x A B φ x A x B φ

Proof

Step Hyp Ref Expression
1 elin x A B x A x B
2 1 anbi1i x A B φ x A x B φ
3 anass x A x B φ x A x B φ
4 2 3 bitri x A B φ x A x B φ
5 4 rexbii2 x A B φ x A x B φ