Metamath Proof Explorer


Theorem rexlimd2

Description: Version of rexlimd with deduction version of second hypothesis. (Contributed by NM, 21-Jul-2013) (Revised by Mario Carneiro, 8-Oct-2016)

Ref Expression
Hypotheses rexlimd2.1 x φ
rexlimd2.2 φ x χ
rexlimd2.3 φ x A ψ χ
Assertion rexlimd2 φ x A ψ χ

Proof

Step Hyp Ref Expression
1 rexlimd2.1 x φ
2 rexlimd2.2 φ x χ
3 rexlimd2.3 φ x A ψ χ
4 1 3 ralrimi φ x A ψ χ
5 r19.23t x χ x A ψ χ x A ψ χ
6 2 5 syl φ x A ψ χ x A ψ χ
7 4 6 mpbid φ x A ψ χ