Metamath Proof Explorer


Theorem rexlimddv

Description: Restricted existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 15-Jun-2016)

Ref Expression
Hypotheses rexlimddv.1 φ x A ψ
rexlimddv.2 φ x A ψ χ
Assertion rexlimddv φ χ

Proof

Step Hyp Ref Expression
1 rexlimddv.1 φ x A ψ
2 rexlimddv.2 φ x A ψ χ
3 2 rexlimdvaa φ x A ψ χ
4 1 3 mpd φ χ