Metamath Proof Explorer
Description: Restricted existential elimination rule of natural deduction.
(Contributed by Mario Carneiro, 15-Jun-2016)
|
|
Ref |
Expression |
|
Hypotheses |
rexlimddv.1 |
|
|
|
rexlimddv.2 |
|
|
Assertion |
rexlimddv |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rexlimddv.1 |
|
2 |
|
rexlimddv.2 |
|
3 |
2
|
rexlimdvaa |
|
4 |
1 3
|
mpd |
|