Metamath Proof Explorer


Theorem rexnal2

Description: Relationship between two restricted universal and existential quantifiers. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion rexnal2 x A y B ¬ φ ¬ x A y B φ

Proof

Step Hyp Ref Expression
1 rexnal y B ¬ φ ¬ y B φ
2 1 rexbii x A y B ¬ φ x A ¬ y B φ
3 rexnal x A ¬ y B φ ¬ x A y B φ
4 2 3 bitri x A y B ¬ φ ¬ x A y B φ