Metamath Proof Explorer


Theorem rexneg

Description: Minus a real number. Remark BourbakiTop1 p. IV.15. (Contributed by FL, 26-Dec-2011) (Proof shortened by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion rexneg A A = A

Proof

Step Hyp Ref Expression
1 df-xneg A = if A = +∞ −∞ if A = −∞ +∞ A
2 renepnf A A +∞
3 ifnefalse A +∞ if A = +∞ −∞ if A = −∞ +∞ A = if A = −∞ +∞ A
4 2 3 syl A if A = +∞ −∞ if A = −∞ +∞ A = if A = −∞ +∞ A
5 renemnf A A −∞
6 ifnefalse A −∞ if A = −∞ +∞ A = A
7 5 6 syl A if A = −∞ +∞ A = A
8 4 7 eqtrd A if A = +∞ −∞ if A = −∞ +∞ A = A
9 1 8 eqtrid A A = A