Metamath Proof Explorer


Theorem rexpen

Description: The real numbers are equinumerous to their own Cartesian product, even though it is not necessarily true that RR is well-orderable (so we cannot use infxpidm2 directly). (Contributed by NM, 30-Jul-2004) (Revised by Mario Carneiro, 16-Jun-2013)

Ref Expression
Assertion rexpen 2

Proof

Step Hyp Ref Expression
1 rpnnen 𝒫
2 nnenom ω
3 pwen ω 𝒫 𝒫 ω
4 2 3 ax-mp 𝒫 𝒫 ω
5 1 4 entri 𝒫 ω
6 omex ω V
7 6 pw2en 𝒫 ω 2 𝑜 ω
8 5 7 entri 2 𝑜 ω
9 xpen 2 𝑜 ω 2 𝑜 ω 2 2 𝑜 ω × 2 𝑜 ω
10 8 8 9 mp2an 2 2 𝑜 ω × 2 𝑜 ω
11 2onn 2 𝑜 ω
12 11 elexi 2 𝑜 V
13 12 12 6 xpmapen 2 𝑜 × 2 𝑜 ω 2 𝑜 ω × 2 𝑜 ω
14 13 ensymi 2 𝑜 ω × 2 𝑜 ω 2 𝑜 × 2 𝑜 ω
15 ssid 2 𝑜 2 𝑜
16 ssnnfi 2 𝑜 ω 2 𝑜 2 𝑜 2 𝑜 Fin
17 11 15 16 mp2an 2 𝑜 Fin
18 xpfi 2 𝑜 Fin 2 𝑜 Fin 2 𝑜 × 2 𝑜 Fin
19 17 17 18 mp2an 2 𝑜 × 2 𝑜 Fin
20 isfinite 2 𝑜 × 2 𝑜 Fin 2 𝑜 × 2 𝑜 ω
21 19 20 mpbi 2 𝑜 × 2 𝑜 ω
22 6 canth2 ω 𝒫 ω
23 sdomtr 2 𝑜 × 2 𝑜 ω ω 𝒫 ω 2 𝑜 × 2 𝑜 𝒫 ω
24 21 22 23 mp2an 2 𝑜 × 2 𝑜 𝒫 ω
25 sdomdom 2 𝑜 × 2 𝑜 𝒫 ω 2 𝑜 × 2 𝑜 𝒫 ω
26 24 25 ax-mp 2 𝑜 × 2 𝑜 𝒫 ω
27 domentr 2 𝑜 × 2 𝑜 𝒫 ω 𝒫 ω 2 𝑜 ω 2 𝑜 × 2 𝑜 2 𝑜 ω
28 26 7 27 mp2an 2 𝑜 × 2 𝑜 2 𝑜 ω
29 mapdom1 2 𝑜 × 2 𝑜 2 𝑜 ω 2 𝑜 × 2 𝑜 ω 2 𝑜 ω ω
30 28 29 ax-mp 2 𝑜 × 2 𝑜 ω 2 𝑜 ω ω
31 mapxpen 2 𝑜 ω ω V ω V 2 𝑜 ω ω 2 𝑜 ω × ω
32 11 6 6 31 mp3an 2 𝑜 ω ω 2 𝑜 ω × ω
33 12 enref 2 𝑜 2 𝑜
34 xpomen ω × ω ω
35 mapen 2 𝑜 2 𝑜 ω × ω ω 2 𝑜 ω × ω 2 𝑜 ω
36 33 34 35 mp2an 2 𝑜 ω × ω 2 𝑜 ω
37 32 36 entri 2 𝑜 ω ω 2 𝑜 ω
38 domentr 2 𝑜 × 2 𝑜 ω 2 𝑜 ω ω 2 𝑜 ω ω 2 𝑜 ω 2 𝑜 × 2 𝑜 ω 2 𝑜 ω
39 30 37 38 mp2an 2 𝑜 × 2 𝑜 ω 2 𝑜 ω
40 endomtr 2 𝑜 ω × 2 𝑜 ω 2 𝑜 × 2 𝑜 ω 2 𝑜 × 2 𝑜 ω 2 𝑜 ω 2 𝑜 ω × 2 𝑜 ω 2 𝑜 ω
41 14 39 40 mp2an 2 𝑜 ω × 2 𝑜 ω 2 𝑜 ω
42 ovex 2 𝑜 ω V
43 0ex V
44 42 43 xpsnen 2 𝑜 ω × 2 𝑜 ω
45 44 ensymi 2 𝑜 ω 2 𝑜 ω ×
46 snfi Fin
47 isfinite Fin ω
48 46 47 mpbi ω
49 sdomtr ω ω 𝒫 ω 𝒫 ω
50 48 22 49 mp2an 𝒫 ω
51 sdomdom 𝒫 ω 𝒫 ω
52 50 51 ax-mp 𝒫 ω
53 domentr 𝒫 ω 𝒫 ω 2 𝑜 ω 2 𝑜 ω
54 52 7 53 mp2an 2 𝑜 ω
55 42 xpdom2 2 𝑜 ω 2 𝑜 ω × 2 𝑜 ω × 2 𝑜 ω
56 54 55 ax-mp 2 𝑜 ω × 2 𝑜 ω × 2 𝑜 ω
57 endomtr 2 𝑜 ω 2 𝑜 ω × 2 𝑜 ω × 2 𝑜 ω × 2 𝑜 ω 2 𝑜 ω 2 𝑜 ω × 2 𝑜 ω
58 45 56 57 mp2an 2 𝑜 ω 2 𝑜 ω × 2 𝑜 ω
59 sbth 2 𝑜 ω × 2 𝑜 ω 2 𝑜 ω 2 𝑜 ω 2 𝑜 ω × 2 𝑜 ω 2 𝑜 ω × 2 𝑜 ω 2 𝑜 ω
60 41 58 59 mp2an 2 𝑜 ω × 2 𝑜 ω 2 𝑜 ω
61 10 60 entri 2 2 𝑜 ω
62 61 8 entr4i 2