Step |
Hyp |
Ref |
Expression |
1 |
|
rpnnen |
|
2 |
|
nnenom |
|
3 |
|
pwen |
|
4 |
2 3
|
ax-mp |
|
5 |
1 4
|
entri |
|
6 |
|
omex |
|
7 |
6
|
pw2en |
|
8 |
5 7
|
entri |
|
9 |
|
xpen |
|
10 |
8 8 9
|
mp2an |
|
11 |
|
2onn |
|
12 |
11
|
elexi |
|
13 |
12 12 6
|
xpmapen |
|
14 |
13
|
ensymi |
|
15 |
|
ssid |
|
16 |
|
ssnnfi |
|
17 |
11 15 16
|
mp2an |
|
18 |
|
xpfi |
|
19 |
17 17 18
|
mp2an |
|
20 |
|
isfinite |
|
21 |
19 20
|
mpbi |
|
22 |
6
|
canth2 |
|
23 |
|
sdomtr |
|
24 |
21 22 23
|
mp2an |
|
25 |
|
sdomdom |
|
26 |
24 25
|
ax-mp |
|
27 |
|
domentr |
|
28 |
26 7 27
|
mp2an |
|
29 |
|
mapdom1 |
|
30 |
28 29
|
ax-mp |
|
31 |
|
mapxpen |
|
32 |
11 6 6 31
|
mp3an |
|
33 |
12
|
enref |
|
34 |
|
xpomen |
|
35 |
|
mapen |
|
36 |
33 34 35
|
mp2an |
|
37 |
32 36
|
entri |
|
38 |
|
domentr |
|
39 |
30 37 38
|
mp2an |
|
40 |
|
endomtr |
|
41 |
14 39 40
|
mp2an |
|
42 |
|
ovex |
|
43 |
|
0ex |
|
44 |
42 43
|
xpsnen |
|
45 |
44
|
ensymi |
|
46 |
|
snfi |
|
47 |
|
isfinite |
|
48 |
46 47
|
mpbi |
|
49 |
|
sdomtr |
|
50 |
48 22 49
|
mp2an |
|
51 |
|
sdomdom |
|
52 |
50 51
|
ax-mp |
|
53 |
|
domentr |
|
54 |
52 7 53
|
mp2an |
|
55 |
42
|
xpdom2 |
|
56 |
54 55
|
ax-mp |
|
57 |
|
endomtr |
|
58 |
45 56 57
|
mp2an |
|
59 |
|
sbth |
|
60 |
41 58 59
|
mp2an |
|
61 |
10 60
|
entri |
|
62 |
61 8
|
entr4i |
|