Metamath Proof Explorer


Theorem rexprg

Description: Convert a restricted existential quantification over a pair to a disjunction. (Contributed by NM, 17-Sep-2011) (Revised by Mario Carneiro, 23-Apr-2015) Avoid ax-10 , ax-12 . (Revised by Gino Giotto, 30-Sep-2024)

Ref Expression
Hypotheses ralprg.1 x = A φ ψ
ralprg.2 x = B φ χ
Assertion rexprg A V B W x A B φ ψ χ

Proof

Step Hyp Ref Expression
1 ralprg.1 x = A φ ψ
2 ralprg.2 x = B φ χ
3 1 notbid x = A ¬ φ ¬ ψ
4 2 notbid x = B ¬ φ ¬ χ
5 3 4 ralprg A V B W x A B ¬ φ ¬ ψ ¬ χ
6 ralnex x A B ¬ φ ¬ x A B φ
7 pm4.56 ¬ ψ ¬ χ ¬ ψ χ
8 6 7 bibi12i x A B ¬ φ ¬ ψ ¬ χ ¬ x A B φ ¬ ψ χ
9 notbi x A B φ ψ χ ¬ x A B φ ¬ ψ χ
10 8 9 sylbb2 x A B ¬ φ ¬ ψ ¬ χ x A B φ ψ χ
11 5 10 syl A V B W x A B φ ψ χ