Metamath Proof Explorer


Theorem rexrab

Description: Existential quantification over a class abstraction. (Contributed by Jeff Madsen, 17-Jun-2011) (Revised by Mario Carneiro, 3-Sep-2015)

Ref Expression
Hypothesis ralab.1 y = x φ ψ
Assertion rexrab x y A | φ χ x A ψ χ

Proof

Step Hyp Ref Expression
1 ralab.1 y = x φ ψ
2 1 elrab x y A | φ x A ψ
3 2 anbi1i x y A | φ χ x A ψ χ
4 anass x A ψ χ x A ψ χ
5 3 4 bitri x y A | φ χ x A ψ χ
6 5 rexbii2 x y A | φ χ x A ψ χ