Description: Statement following from existence and generalization with equality. (Contributed by AV, 9-Feb-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rexraleqim.1 | ||
rexraleqim.2 | |||
Assertion | rexraleqim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexraleqim.1 | ||
2 | rexraleqim.2 | ||
3 | eqeq1 | ||
4 | 1 3 | imbi12d | |
5 | 4 | rspcva | |
6 | 2 | biimpd | |
7 | 5 6 | syli | |
8 | 7 | impancom | |
9 | 8 | rexlimiva | |
10 | 9 | imp |