Description: Statement following from existence and generalization with equality. (Contributed by AV, 9-Feb-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rexraleqim.1 | ||
| rexraleqim.2 | |||
| Assertion | rexraleqim |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexraleqim.1 | ||
| 2 | rexraleqim.2 | ||
| 3 | eqeq1 | ||
| 4 | 1 3 | imbi12d | |
| 5 | 4 | rspcva | |
| 6 | 2 | biimpd | |
| 7 | 5 6 | syli | |
| 8 | 7 | impancom | |
| 9 | 8 | rexlimiva | |
| 10 | 9 | imp |