Metamath Proof Explorer


Theorem rexraleqim

Description: Statement following from existence and generalization with equality. (Contributed by AV, 9-Feb-2019)

Ref Expression
Hypotheses rexraleqim.1 x = z ψ φ
rexraleqim.2 z = Y φ θ
Assertion rexraleqim z A φ x A ψ x = Y θ

Proof

Step Hyp Ref Expression
1 rexraleqim.1 x = z ψ φ
2 rexraleqim.2 z = Y φ θ
3 eqeq1 x = z x = Y z = Y
4 1 3 imbi12d x = z ψ x = Y φ z = Y
5 4 rspcva z A x A ψ x = Y φ z = Y
6 2 biimpd z = Y φ θ
7 5 6 syli z A x A ψ x = Y φ θ
8 7 impancom z A φ x A ψ x = Y θ
9 8 rexlimiva z A φ x A ψ x = Y θ
10 9 imp z A φ x A ψ x = Y θ