Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Operations
rexrnmpo
Next ⟩
ovid
Metamath Proof Explorer
Ascii
Unicode
Theorem
rexrnmpo
Description:
A restricted quantifier over an image set.
(Contributed by
Mario Carneiro
, 1-Sep-2015)
Ref
Expression
Hypotheses
rngop.1
⊢
F
=
x
∈
A
,
y
∈
B
⟼
C
ralrnmpo.2
⊢
z
=
C
→
φ
↔
ψ
Assertion
rexrnmpo
⊢
∀
x
∈
A
∀
y
∈
B
C
∈
V
→
∃
z
∈
ran
⁡
F
φ
↔
∃
x
∈
A
∃
y
∈
B
ψ
Proof
Step
Hyp
Ref
Expression
1
rngop.1
⊢
F
=
x
∈
A
,
y
∈
B
⟼
C
2
ralrnmpo.2
⊢
z
=
C
→
φ
↔
ψ
3
2
notbid
⊢
z
=
C
→
¬
φ
↔
¬
ψ
4
1
3
ralrnmpo
⊢
∀
x
∈
A
∀
y
∈
B
C
∈
V
→
∀
z
∈
ran
⁡
F
¬
φ
↔
∀
x
∈
A
∀
y
∈
B
¬
ψ
5
4
notbid
⊢
∀
x
∈
A
∀
y
∈
B
C
∈
V
→
¬
∀
z
∈
ran
⁡
F
¬
φ
↔
¬
∀
x
∈
A
∀
y
∈
B
¬
ψ
6
dfrex2
⊢
∃
z
∈
ran
⁡
F
φ
↔
¬
∀
z
∈
ran
⁡
F
¬
φ
7
dfrex2
⊢
∃
y
∈
B
ψ
↔
¬
∀
y
∈
B
¬
ψ
8
7
rexbii
⊢
∃
x
∈
A
∃
y
∈
B
ψ
↔
∃
x
∈
A
¬
∀
y
∈
B
¬
ψ
9
rexnal
⊢
∃
x
∈
A
¬
∀
y
∈
B
¬
ψ
↔
¬
∀
x
∈
A
∀
y
∈
B
¬
ψ
10
8
9
bitri
⊢
∃
x
∈
A
∃
y
∈
B
ψ
↔
¬
∀
x
∈
A
∀
y
∈
B
¬
ψ
11
5
6
10
3bitr4g
⊢
∀
x
∈
A
∀
y
∈
B
C
∈
V
→
∃
z
∈
ran
⁡
F
φ
↔
∃
x
∈
A
∃
y
∈
B
ψ