Metamath Proof Explorer


Theorem rexrnmpo

Description: A restricted quantifier over an image set. (Contributed by Mario Carneiro, 1-Sep-2015)

Ref Expression
Hypotheses rngop.1 F = x A , y B C
ralrnmpo.2 z = C φ ψ
Assertion rexrnmpo x A y B C V z ran F φ x A y B ψ

Proof

Step Hyp Ref Expression
1 rngop.1 F = x A , y B C
2 ralrnmpo.2 z = C φ ψ
3 2 notbid z = C ¬ φ ¬ ψ
4 1 3 ralrnmpo x A y B C V z ran F ¬ φ x A y B ¬ ψ
5 4 notbid x A y B C V ¬ z ran F ¬ φ ¬ x A y B ¬ ψ
6 dfrex2 z ran F φ ¬ z ran F ¬ φ
7 dfrex2 y B ψ ¬ y B ¬ ψ
8 7 rexbii x A y B ψ x A ¬ y B ¬ ψ
9 rexnal x A ¬ y B ¬ ψ ¬ x A y B ¬ ψ
10 8 9 bitri x A y B ψ ¬ x A y B ¬ ψ
11 5 6 10 3bitr4g x A y B C V z ran F φ x A y B ψ