Metamath Proof Explorer


Theorem rexrnmptw

Description: A restricted quantifier over an image set. Version of rexrnmpt with a disjoint variable condition, which does not require ax-13 . (Contributed by Mario Carneiro, 20-Aug-2015) (Revised by Gino Giotto, 26-Jan-2024)

Ref Expression
Hypotheses rexrnmptw.1 F = x A B
rexrnmptw.2 y = B ψ χ
Assertion rexrnmptw x A B V y ran F ψ x A χ

Proof

Step Hyp Ref Expression
1 rexrnmptw.1 F = x A B
2 rexrnmptw.2 y = B ψ χ
3 2 notbid y = B ¬ ψ ¬ χ
4 1 3 ralrnmptw x A B V y ran F ¬ ψ x A ¬ χ
5 4 notbid x A B V ¬ y ran F ¬ ψ ¬ x A ¬ χ
6 dfrex2 y ran F ψ ¬ y ran F ¬ ψ
7 dfrex2 x A χ ¬ x A ¬ χ
8 5 6 7 3bitr4g x A B V y ran F ψ x A χ