Metamath Proof Explorer
Description: Convert an existential quantification restricted to a singleton to a
substitution. (Contributed by Jeff Madsen, 5-Jan-2011)
|
|
Ref |
Expression |
|
Hypotheses |
ralsn.1 |
|
|
|
ralsn.2 |
|
|
Assertion |
rexsn |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ralsn.1 |
|
2 |
|
ralsn.2 |
|
3 |
2
|
rexsng |
|
4 |
1 3
|
ax-mp |
|