Metamath Proof Explorer


Theorem rexsub

Description: Extended real subtraction when both arguments are real. (Contributed by Mario Carneiro, 23-Aug-2015)

Ref Expression
Assertion rexsub A B A + 𝑒 B = A B

Proof

Step Hyp Ref Expression
1 rexneg B B = B
2 1 adantl A B B = B
3 2 oveq2d A B A + 𝑒 B = A + 𝑒 B
4 renegcl B B
5 rexadd A B A + 𝑒 B = A + B
6 4 5 sylan2 A B A + 𝑒 B = A + B
7 recn A A
8 recn B B
9 negsub A B A + B = A B
10 7 8 9 syl2an A B A + B = A B
11 3 6 10 3eqtrd A B A + 𝑒 B = A B