Metamath Proof Explorer


Theorem rexsupp

Description: Existential quantification restricted to a support. (Contributed by Stefan O'Rear, 23-Mar-2015) (Revised by AV, 27-May-2019)

Ref Expression
Assertion rexsupp F Fn X X V Z W x supp Z F φ x X F x Z φ

Proof

Step Hyp Ref Expression
1 elsuppfn F Fn X X V Z W x supp Z F x X F x Z
2 1 anbi1d F Fn X X V Z W x supp Z F φ x X F x Z φ
3 anass x X F x Z φ x X F x Z φ
4 2 3 bitrdi F Fn X X V Z W x supp Z F φ x X F x Z φ
5 4 rexbidv2 F Fn X X V Z W x supp Z F φ x X F x Z φ