Metamath Proof Explorer


Theorem rext

Description: A theorem similar to extensionality, requiring the existence of a singleton. Exercise 8 of TakeutiZaring p. 16. (Contributed by NM, 10-Aug-1993)

Ref Expression
Assertion rext z x z y z x = y

Proof

Step Hyp Ref Expression
1 vsnid x x
2 snex x V
3 eleq2 z = x x z x x
4 eleq2 z = x y z y x
5 3 4 imbi12d z = x x z y z x x y x
6 2 5 spcv z x z y z x x y x
7 1 6 mpi z x z y z y x
8 velsn y x y = x
9 equcomi y = x x = y
10 8 9 sylbi y x x = y
11 7 10 syl z x z y z x = y