Metamath Proof Explorer
Description: Convert an existential quantification over an unordered triple to a
disjunction. (Contributed by Mario Carneiro, 23-Apr-2015)
|
|
Ref |
Expression |
|
Hypotheses |
raltp.1 |
|
|
|
raltp.2 |
|
|
|
raltp.3 |
|
|
|
raltp.4 |
|
|
|
raltp.5 |
|
|
|
raltp.6 |
|
|
Assertion |
rextp |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
raltp.1 |
|
2 |
|
raltp.2 |
|
3 |
|
raltp.3 |
|
4 |
|
raltp.4 |
|
5 |
|
raltp.5 |
|
6 |
|
raltp.6 |
|
7 |
4 5 6
|
rextpg |
|
8 |
1 2 3 7
|
mp3an |
|