Metamath Proof Explorer


Theorem rextpg

Description: Convert a restricted existential quantification over a triple to a disjunction. (Contributed by Mario Carneiro, 23-Apr-2015)

Ref Expression
Hypotheses ralprg.1 x = A φ ψ
ralprg.2 x = B φ χ
raltpg.3 x = C φ θ
Assertion rextpg A V B W C X x A B C φ ψ χ θ

Proof

Step Hyp Ref Expression
1 ralprg.1 x = A φ ψ
2 ralprg.2 x = B φ χ
3 raltpg.3 x = C φ θ
4 1 2 rexprg A V B W x A B φ ψ χ
5 4 orbi1d A V B W x A B φ x C φ ψ χ x C φ
6 3 rexsng C X x C φ θ
7 6 orbi2d C X ψ χ x C φ ψ χ θ
8 5 7 sylan9bb A V B W C X x A B φ x C φ ψ χ θ
9 8 3impa A V B W C X x A B φ x C φ ψ χ θ
10 df-tp A B C = A B C
11 10 rexeqi x A B C φ x A B C φ
12 rexun x A B C φ x A B φ x C φ
13 11 12 bitri x A B C φ x A B φ x C φ
14 df-3or ψ χ θ ψ χ θ
15 9 13 14 3bitr4g A V B W C X x A B C φ ψ χ θ