Metamath Proof Explorer


Theorem rexun

Description: Restricted existential quantification over union. (Contributed by Jeff Madsen, 5-Jan-2011)

Ref Expression
Assertion rexun x A B φ x A φ x B φ

Proof

Step Hyp Ref Expression
1 df-rex x A B φ x x A B φ
2 19.43 x x A φ x B φ x x A φ x x B φ
3 elun x A B x A x B
4 3 anbi1i x A B φ x A x B φ
5 andir x A x B φ x A φ x B φ
6 4 5 bitri x A B φ x A φ x B φ
7 6 exbii x x A B φ x x A φ x B φ
8 df-rex x A φ x x A φ
9 df-rex x B φ x x B φ
10 8 9 orbi12i x A φ x B φ x x A φ x x B φ
11 2 7 10 3bitr4i x x A B φ x A φ x B φ
12 1 11 bitri x A B φ x A φ x B φ