Metamath Proof Explorer


Theorem rexuz2

Description: Restricted existential quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005)

Ref Expression
Assertion rexuz2 n M φ M n M n φ

Proof

Step Hyp Ref Expression
1 eluz2 n M M n M n
2 df-3an M n M n M n M n
3 1 2 bitri n M M n M n
4 3 anbi1i n M φ M n M n φ
5 anass M n M n φ M n M n φ
6 an21 M n M n φ n M M n φ
7 5 6 bitri M n M n φ n M M n φ
8 4 7 bitri n M φ n M M n φ
9 8 rexbii2 n M φ n M M n φ
10 r19.42v n M M n φ M n M n φ
11 9 10 bitri n M φ M n M n φ