Description: Convert an upper real quantifier to an upper integer quantifier. (Contributed by Mario Carneiro, 7-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rexuz3.1 | |
|
Assertion | rexuzre | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexuz3.1 | |
|
2 | eluzelre | |
|
3 | 2 1 | eleq2s | |
4 | 3 | adantr | |
5 | eluzelz | |
|
6 | 5 1 | eleq2s | |
7 | eluzelz | |
|
8 | 7 1 | eleq2s | |
9 | eluz | |
|
10 | 6 8 9 | syl2an | |
11 | 10 | biimprd | |
12 | 11 | expimpd | |
13 | 12 | imim1d | |
14 | 13 | exp4a | |
15 | 14 | ralimdv2 | |
16 | 15 | imp | |
17 | 4 16 | jca | |
18 | 17 | reximi2 | |
19 | simpl | |
|
20 | flcl | |
|
21 | 20 | adantl | |
22 | 21 | peano2zd | |
23 | 22 19 | ifcld | |
24 | zre | |
|
25 | reflcl | |
|
26 | peano2re | |
|
27 | 25 26 | syl | |
28 | max1 | |
|
29 | 24 27 28 | syl2an | |
30 | eluz2 | |
|
31 | 19 23 29 30 | syl3anbrc | |
32 | 31 1 | eleqtrrdi | |
33 | impexp | |
|
34 | uzss | |
|
35 | 31 34 | syl | |
36 | 35 1 | sseqtrrdi | |
37 | 36 | sselda | |
38 | simplr | |
|
39 | 23 | adantr | |
40 | 39 | zred | |
41 | eluzelre | |
|
42 | 41 | adantl | |
43 | simpr | |
|
44 | 27 | adantl | |
45 | 23 | zred | |
46 | fllep1 | |
|
47 | 46 | adantl | |
48 | max2 | |
|
49 | 24 27 48 | syl2an | |
50 | 43 44 45 47 49 | letrd | |
51 | 50 | adantr | |
52 | eluzle | |
|
53 | 52 | adantl | |
54 | 38 40 42 51 53 | letrd | |
55 | 37 54 | jca | |
56 | 55 | ex | |
57 | 56 | imim1d | |
58 | 33 57 | biimtrrid | |
59 | 58 | ralimdv2 | |
60 | fveq2 | |
|
61 | 60 | raleqdv | |
62 | 61 | rspcev | |
63 | 32 59 62 | syl6an | |
64 | 63 | rexlimdva | |
65 | fveq2 | |
|
66 | 65 | raleqdv | |
67 | 66 | cbvrexvw | |
68 | 64 67 | imbitrdi | |
69 | 18 68 | impbid2 | |