Step |
Hyp |
Ref |
Expression |
1 |
|
rexuz3.1 |
|
2 |
|
eluzelre |
|
3 |
2 1
|
eleq2s |
|
4 |
3
|
adantr |
|
5 |
|
eluzelz |
|
6 |
5 1
|
eleq2s |
|
7 |
|
eluzelz |
|
8 |
7 1
|
eleq2s |
|
9 |
|
eluz |
|
10 |
6 8 9
|
syl2an |
|
11 |
10
|
biimprd |
|
12 |
11
|
expimpd |
|
13 |
12
|
imim1d |
|
14 |
13
|
exp4a |
|
15 |
14
|
ralimdv2 |
|
16 |
15
|
imp |
|
17 |
4 16
|
jca |
|
18 |
17
|
reximi2 |
|
19 |
|
simpl |
|
20 |
|
flcl |
|
21 |
20
|
adantl |
|
22 |
21
|
peano2zd |
|
23 |
22 19
|
ifcld |
|
24 |
|
zre |
|
25 |
|
reflcl |
|
26 |
|
peano2re |
|
27 |
25 26
|
syl |
|
28 |
|
max1 |
|
29 |
24 27 28
|
syl2an |
|
30 |
|
eluz2 |
|
31 |
19 23 29 30
|
syl3anbrc |
|
32 |
31 1
|
eleqtrrdi |
|
33 |
|
impexp |
|
34 |
|
uzss |
|
35 |
31 34
|
syl |
|
36 |
35 1
|
sseqtrrdi |
|
37 |
36
|
sselda |
|
38 |
|
simplr |
|
39 |
23
|
adantr |
|
40 |
39
|
zred |
|
41 |
|
eluzelre |
|
42 |
41
|
adantl |
|
43 |
|
simpr |
|
44 |
27
|
adantl |
|
45 |
23
|
zred |
|
46 |
|
fllep1 |
|
47 |
46
|
adantl |
|
48 |
|
max2 |
|
49 |
24 27 48
|
syl2an |
|
50 |
43 44 45 47 49
|
letrd |
|
51 |
50
|
adantr |
|
52 |
|
eluzle |
|
53 |
52
|
adantl |
|
54 |
38 40 42 51 53
|
letrd |
|
55 |
37 54
|
jca |
|
56 |
55
|
ex |
|
57 |
56
|
imim1d |
|
58 |
33 57
|
syl5bir |
|
59 |
58
|
ralimdv2 |
|
60 |
|
fveq2 |
|
61 |
60
|
raleqdv |
|
62 |
61
|
rspcev |
|
63 |
32 59 62
|
syl6an |
|
64 |
63
|
rexlimdva |
|
65 |
|
fveq2 |
|
66 |
65
|
raleqdv |
|
67 |
66
|
cbvrexvw |
|
68 |
64 67
|
syl6ib |
|
69 |
18 68
|
impbid2 |
|