Metamath Proof Explorer


Theorem rexuzre

Description: Convert an upper real quantifier to an upper integer quantifier. (Contributed by Mario Carneiro, 7-May-2016)

Ref Expression
Hypothesis rexuz3.1 Z=M
Assertion rexuzre MjZkjφjkZjkφ

Proof

Step Hyp Ref Expression
1 rexuz3.1 Z=M
2 eluzelre jMj
3 2 1 eleq2s jZj
4 3 adantr jZkjφj
5 eluzelz jMj
6 5 1 eleq2s jZj
7 eluzelz kMk
8 7 1 eleq2s kZk
9 eluz jkkjjk
10 6 8 9 syl2an jZkZkjjk
11 10 biimprd jZkZjkkj
12 11 expimpd jZkZjkkj
13 12 imim1d jZkjφkZjkφ
14 13 exp4a jZkjφkZjkφ
15 14 ralimdv2 jZkjφkZjkφ
16 15 imp jZkjφkZjkφ
17 4 16 jca jZkjφjkZjkφ
18 17 reximi2 jZkjφjkZjkφ
19 simpl MjM
20 flcl jj
21 20 adantl Mjj
22 21 peano2zd Mjj+1
23 22 19 ifcld MjifMj+1j+1M
24 zre MM
25 reflcl jj
26 peano2re jj+1
27 25 26 syl jj+1
28 max1 Mj+1MifMj+1j+1M
29 24 27 28 syl2an MjMifMj+1j+1M
30 eluz2 ifMj+1j+1MMMifMj+1j+1MMifMj+1j+1M
31 19 23 29 30 syl3anbrc MjifMj+1j+1MM
32 31 1 eleqtrrdi MjifMj+1j+1MZ
33 impexp kZjkφkZjkφ
34 uzss ifMj+1j+1MMifMj+1j+1MM
35 31 34 syl MjifMj+1j+1MM
36 35 1 sseqtrrdi MjifMj+1j+1MZ
37 36 sselda MjkifMj+1j+1MkZ
38 simplr MjkifMj+1j+1Mj
39 23 adantr MjkifMj+1j+1MifMj+1j+1M
40 39 zred MjkifMj+1j+1MifMj+1j+1M
41 eluzelre kifMj+1j+1Mk
42 41 adantl MjkifMj+1j+1Mk
43 simpr Mjj
44 27 adantl Mjj+1
45 23 zred MjifMj+1j+1M
46 fllep1 jjj+1
47 46 adantl Mjjj+1
48 max2 Mj+1j+1ifMj+1j+1M
49 24 27 48 syl2an Mjj+1ifMj+1j+1M
50 43 44 45 47 49 letrd MjjifMj+1j+1M
51 50 adantr MjkifMj+1j+1MjifMj+1j+1M
52 eluzle kifMj+1j+1MifMj+1j+1Mk
53 52 adantl MjkifMj+1j+1MifMj+1j+1Mk
54 38 40 42 51 53 letrd MjkifMj+1j+1Mjk
55 37 54 jca MjkifMj+1j+1MkZjk
56 55 ex MjkifMj+1j+1MkZjk
57 56 imim1d MjkZjkφkifMj+1j+1Mφ
58 33 57 biimtrrid MjkZjkφkifMj+1j+1Mφ
59 58 ralimdv2 MjkZjkφkifMj+1j+1Mφ
60 fveq2 m=ifMj+1j+1Mm=ifMj+1j+1M
61 60 raleqdv m=ifMj+1j+1MkmφkifMj+1j+1Mφ
62 61 rspcev ifMj+1j+1MZkifMj+1j+1MφmZkmφ
63 32 59 62 syl6an MjkZjkφmZkmφ
64 63 rexlimdva MjkZjkφmZkmφ
65 fveq2 m=jm=j
66 65 raleqdv m=jkmφkjφ
67 66 cbvrexvw mZkmφjZkjφ
68 64 67 imbitrdi MjkZjkφjZkjφ
69 18 68 impbid2 MjZkjφjkZjkφ