Metamath Proof Explorer


Theorem rexuzre

Description: Convert an upper real quantifier to an upper integer quantifier. (Contributed by Mario Carneiro, 7-May-2016)

Ref Expression
Hypothesis rexuz3.1 Z = M
Assertion rexuzre M j Z k j φ j k Z j k φ

Proof

Step Hyp Ref Expression
1 rexuz3.1 Z = M
2 eluzelre j M j
3 2 1 eleq2s j Z j
4 3 adantr j Z k j φ j
5 eluzelz j M j
6 5 1 eleq2s j Z j
7 eluzelz k M k
8 7 1 eleq2s k Z k
9 eluz j k k j j k
10 6 8 9 syl2an j Z k Z k j j k
11 10 biimprd j Z k Z j k k j
12 11 expimpd j Z k Z j k k j
13 12 imim1d j Z k j φ k Z j k φ
14 13 exp4a j Z k j φ k Z j k φ
15 14 ralimdv2 j Z k j φ k Z j k φ
16 15 imp j Z k j φ k Z j k φ
17 4 16 jca j Z k j φ j k Z j k φ
18 17 reximi2 j Z k j φ j k Z j k φ
19 simpl M j M
20 flcl j j
21 20 adantl M j j
22 21 peano2zd M j j + 1
23 22 19 ifcld M j if M j + 1 j + 1 M
24 zre M M
25 reflcl j j
26 peano2re j j + 1
27 25 26 syl j j + 1
28 max1 M j + 1 M if M j + 1 j + 1 M
29 24 27 28 syl2an M j M if M j + 1 j + 1 M
30 eluz2 if M j + 1 j + 1 M M M if M j + 1 j + 1 M M if M j + 1 j + 1 M
31 19 23 29 30 syl3anbrc M j if M j + 1 j + 1 M M
32 31 1 eleqtrrdi M j if M j + 1 j + 1 M Z
33 impexp k Z j k φ k Z j k φ
34 uzss if M j + 1 j + 1 M M if M j + 1 j + 1 M M
35 31 34 syl M j if M j + 1 j + 1 M M
36 35 1 sseqtrrdi M j if M j + 1 j + 1 M Z
37 36 sselda M j k if M j + 1 j + 1 M k Z
38 simplr M j k if M j + 1 j + 1 M j
39 23 adantr M j k if M j + 1 j + 1 M if M j + 1 j + 1 M
40 39 zred M j k if M j + 1 j + 1 M if M j + 1 j + 1 M
41 eluzelre k if M j + 1 j + 1 M k
42 41 adantl M j k if M j + 1 j + 1 M k
43 simpr M j j
44 27 adantl M j j + 1
45 23 zred M j if M j + 1 j + 1 M
46 fllep1 j j j + 1
47 46 adantl M j j j + 1
48 max2 M j + 1 j + 1 if M j + 1 j + 1 M
49 24 27 48 syl2an M j j + 1 if M j + 1 j + 1 M
50 43 44 45 47 49 letrd M j j if M j + 1 j + 1 M
51 50 adantr M j k if M j + 1 j + 1 M j if M j + 1 j + 1 M
52 eluzle k if M j + 1 j + 1 M if M j + 1 j + 1 M k
53 52 adantl M j k if M j + 1 j + 1 M if M j + 1 j + 1 M k
54 38 40 42 51 53 letrd M j k if M j + 1 j + 1 M j k
55 37 54 jca M j k if M j + 1 j + 1 M k Z j k
56 55 ex M j k if M j + 1 j + 1 M k Z j k
57 56 imim1d M j k Z j k φ k if M j + 1 j + 1 M φ
58 33 57 syl5bir M j k Z j k φ k if M j + 1 j + 1 M φ
59 58 ralimdv2 M j k Z j k φ k if M j + 1 j + 1 M φ
60 fveq2 m = if M j + 1 j + 1 M m = if M j + 1 j + 1 M
61 60 raleqdv m = if M j + 1 j + 1 M k m φ k if M j + 1 j + 1 M φ
62 61 rspcev if M j + 1 j + 1 M Z k if M j + 1 j + 1 M φ m Z k m φ
63 32 59 62 syl6an M j k Z j k φ m Z k m φ
64 63 rexlimdva M j k Z j k φ m Z k m φ
65 fveq2 m = j m = j
66 65 raleqdv m = j k m φ k j φ
67 66 cbvrexvw m Z k m φ j Z k j φ
68 64 67 syl6ib M j k Z j k φ j Z k j φ
69 18 68 impbid2 M j Z k j φ j k Z j k φ