Metamath Proof Explorer


Theorem rexxfr

Description: Transfer existence from a variable x to another variable y contained in expression A . (Contributed by NM, 10-Jun-2005) (Revised by Mario Carneiro, 15-Aug-2014)

Ref Expression
Hypotheses ralxfr.1 y C A B
ralxfr.2 x B y C x = A
ralxfr.3 x = A φ ψ
Assertion rexxfr x B φ y C ψ

Proof

Step Hyp Ref Expression
1 ralxfr.1 y C A B
2 ralxfr.2 x B y C x = A
3 ralxfr.3 x = A φ ψ
4 dfrex2 x B φ ¬ x B ¬ φ
5 dfrex2 y C ψ ¬ y C ¬ ψ
6 3 notbid x = A ¬ φ ¬ ψ
7 1 2 6 ralxfr x B ¬ φ y C ¬ ψ
8 5 7 xchbinxr y C ψ ¬ x B ¬ φ
9 4 8 bitr4i x B φ y C ψ