Metamath Proof Explorer


Theorem rexxfr2d

Description: Transfer universal quantification from a variable x to another variable y contained in expression A . (Contributed by Mario Carneiro, 20-Aug-2014) (Proof shortened by Mario Carneiro, 19-Nov-2016)

Ref Expression
Hypotheses ralxfr2d.1 φ y C A V
ralxfr2d.2 φ x B y C x = A
ralxfr2d.3 φ x = A ψ χ
Assertion rexxfr2d φ x B ψ y C χ

Proof

Step Hyp Ref Expression
1 ralxfr2d.1 φ y C A V
2 ralxfr2d.2 φ x B y C x = A
3 ralxfr2d.3 φ x = A ψ χ
4 3 notbid φ x = A ¬ ψ ¬ χ
5 1 2 4 ralxfr2d φ x B ¬ ψ y C ¬ χ
6 5 notbid φ ¬ x B ¬ ψ ¬ y C ¬ χ
7 dfrex2 x B ψ ¬ x B ¬ ψ
8 dfrex2 y C χ ¬ y C ¬ χ
9 6 7 8 3bitr4g φ x B ψ y C χ