Metamath Proof Explorer


Theorem rexxfrd

Description: Transfer universal quantification from a variable x to another variable y contained in expression A . (Contributed by FL, 10-Apr-2007) (Revised by Mario Carneiro, 15-Aug-2014)

Ref Expression
Hypotheses ralxfrd.1 φ y C A B
ralxfrd.2 φ x B y C x = A
ralxfrd.3 φ x = A ψ χ
Assertion rexxfrd φ x B ψ y C χ

Proof

Step Hyp Ref Expression
1 ralxfrd.1 φ y C A B
2 ralxfrd.2 φ x B y C x = A
3 ralxfrd.3 φ x = A ψ χ
4 3 notbid φ x = A ¬ ψ ¬ χ
5 1 2 4 ralxfrd φ x B ¬ ψ y C ¬ χ
6 5 notbid φ ¬ x B ¬ ψ ¬ y C ¬ χ
7 dfrex2 x B ψ ¬ x B ¬ ψ
8 dfrex2 y C χ ¬ y C ¬ χ
9 6 7 8 3bitr4g φ x B ψ y C χ