Metamath Proof Explorer


Theorem rexxfrd2

Description: Transfer existence from a variable x to another variable y contained in expression A . Variant of rexxfrd . (Contributed by Alexander van der Vekens, 25-Apr-2018)

Ref Expression
Hypotheses ralxfrd2.1 φ y C A B
ralxfrd2.2 φ x B y C x = A
ralxfrd2.3 φ y C x = A ψ χ
Assertion rexxfrd2 φ x B ψ y C χ

Proof

Step Hyp Ref Expression
1 ralxfrd2.1 φ y C A B
2 ralxfrd2.2 φ x B y C x = A
3 ralxfrd2.3 φ y C x = A ψ χ
4 3 notbid φ y C x = A ¬ ψ ¬ χ
5 1 2 4 ralxfrd2 φ x B ¬ ψ y C ¬ χ
6 5 notbid φ ¬ x B ¬ ψ ¬ y C ¬ χ
7 dfrex2 x B ψ ¬ x B ¬ ψ
8 dfrex2 y C χ ¬ y C ¬ χ
9 6 7 8 3bitr4g φ x B ψ y C χ