Metamath Proof Explorer


Theorem rexxp

Description: Existential quantification restricted to a Cartesian product is equivalent to a double restricted quantification. (Contributed by NM, 11-Nov-1995) (Revised by Mario Carneiro, 14-Feb-2015)

Ref Expression
Hypothesis ralxp.1 x = y z φ ψ
Assertion rexxp x A × B φ y A z B ψ

Proof

Step Hyp Ref Expression
1 ralxp.1 x = y z φ ψ
2 iunxpconst y A y × B = A × B
3 2 rexeqi x y A y × B φ x A × B φ
4 1 rexiunxp x y A y × B φ y A z B ψ
5 3 4 bitr3i x A × B φ y A z B ψ