Metamath Proof Explorer


Theorem rfcnpre3

Description: If F is a continuous function with respect to the standard topology, then the preimage A of the values greater than or equal to a given real B is a closed set. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses rfcnpre3.2 _ t F
rfcnpre3.3 K = topGen ran .
rfcnpre3.4 T = J
rfcnpre3.5 A = t T | B F t
rfcnpre3.6 φ B
rfcnpre3.8 φ F J Cn K
Assertion rfcnpre3 φ A Clsd J

Proof

Step Hyp Ref Expression
1 rfcnpre3.2 _ t F
2 rfcnpre3.3 K = topGen ran .
3 rfcnpre3.4 T = J
4 rfcnpre3.5 A = t T | B F t
5 rfcnpre3.6 φ B
6 rfcnpre3.8 φ F J Cn K
7 eqid J Cn K = J Cn K
8 2 3 7 6 fcnre φ F : T
9 ffn F : T F Fn T
10 elpreima F Fn T s F -1 B +∞ s T F s B +∞
11 8 9 10 3syl φ s F -1 B +∞ s T F s B +∞
12 5 rexrd φ B *
13 12 adantr φ s T B *
14 pnfxr +∞ *
15 elico1 B * +∞ * F s B +∞ F s * B F s F s < +∞
16 13 14 15 sylancl φ s T F s B +∞ F s * B F s F s < +∞
17 simpr2 φ s T F s * B F s F s < +∞ B F s
18 8 ffvelrnda φ s T F s
19 18 rexrd φ s T F s *
20 19 adantr φ s T B F s F s *
21 simpr φ s T B F s B F s
22 18 adantr φ s T B F s F s
23 ltpnf F s F s < +∞
24 22 23 syl φ s T B F s F s < +∞
25 20 21 24 3jca φ s T B F s F s * B F s F s < +∞
26 17 25 impbida φ s T F s * B F s F s < +∞ B F s
27 16 26 bitrd φ s T F s B +∞ B F s
28 27 pm5.32da φ s T F s B +∞ s T B F s
29 11 28 bitrd φ s F -1 B +∞ s T B F s
30 nfcv _ t s
31 nfcv _ t T
32 nfcv _ t B
33 nfcv _ t
34 1 30 nffv _ t F s
35 32 33 34 nfbr t B F s
36 fveq2 t = s F t = F s
37 36 breq2d t = s B F t B F s
38 30 31 35 37 elrabf s t T | B F t s T B F s
39 29 38 bitr4di φ s F -1 B +∞ s t T | B F t
40 39 eqrdv φ F -1 B +∞ = t T | B F t
41 40 4 eqtr4di φ F -1 B +∞ = A
42 icopnfcld B B +∞ Clsd topGen ran .
43 5 42 syl φ B +∞ Clsd topGen ran .
44 2 fveq2i Clsd K = Clsd topGen ran .
45 43 44 eleqtrrdi φ B +∞ Clsd K
46 cnclima F J Cn K B +∞ Clsd K F -1 B +∞ Clsd J
47 6 45 46 syl2anc φ F -1 B +∞ Clsd J
48 41 47 eqeltrrd φ A Clsd J