Metamath Proof Explorer


Theorem rge0srg

Description: The nonnegative real numbers form a semiring (commutative by subcmn ). (Contributed by Thierry Arnoux, 6-Sep-2018)

Ref Expression
Assertion rge0srg fld 𝑠 0 +∞ SRing

Proof

Step Hyp Ref Expression
1 cnring fld Ring
2 ringcmn fld Ring fld CMnd
3 1 2 ax-mp fld CMnd
4 rege0subm 0 +∞ SubMnd fld
5 eqid fld 𝑠 0 +∞ = fld 𝑠 0 +∞
6 5 submcmn fld CMnd 0 +∞ SubMnd fld fld 𝑠 0 +∞ CMnd
7 3 4 6 mp2an fld 𝑠 0 +∞ CMnd
8 rge0ssre 0 +∞
9 ax-resscn
10 8 9 sstri 0 +∞
11 1re 1
12 0le1 0 1
13 ltpnf 1 1 < +∞
14 11 13 ax-mp 1 < +∞
15 0re 0
16 pnfxr +∞ *
17 elico2 0 +∞ * 1 0 +∞ 1 0 1 1 < +∞
18 15 16 17 mp2an 1 0 +∞ 1 0 1 1 < +∞
19 11 12 14 18 mpbir3an 1 0 +∞
20 ge0mulcl x 0 +∞ y 0 +∞ x y 0 +∞
21 20 rgen2 x 0 +∞ y 0 +∞ x y 0 +∞
22 eqid mulGrp fld = mulGrp fld
23 22 ringmgp fld Ring mulGrp fld Mnd
24 cnfldbas = Base fld
25 22 24 mgpbas = Base mulGrp fld
26 cnfld1 1 = 1 fld
27 22 26 ringidval 1 = 0 mulGrp fld
28 cnfldmul × = fld
29 22 28 mgpplusg × = + mulGrp fld
30 25 27 29 issubm mulGrp fld Mnd 0 +∞ SubMnd mulGrp fld 0 +∞ 1 0 +∞ x 0 +∞ y 0 +∞ x y 0 +∞
31 1 23 30 mp2b 0 +∞ SubMnd mulGrp fld 0 +∞ 1 0 +∞ x 0 +∞ y 0 +∞ x y 0 +∞
32 10 19 21 31 mpbir3an 0 +∞ SubMnd mulGrp fld
33 eqid mulGrp fld 𝑠 0 +∞ = mulGrp fld 𝑠 0 +∞
34 33 submmnd 0 +∞ SubMnd mulGrp fld mulGrp fld 𝑠 0 +∞ Mnd
35 32 34 ax-mp mulGrp fld 𝑠 0 +∞ Mnd
36 simpll x 0 +∞ y 0 +∞ z 0 +∞ x 0 +∞
37 10 36 sseldi x 0 +∞ y 0 +∞ z 0 +∞ x
38 simplr x 0 +∞ y 0 +∞ z 0 +∞ y 0 +∞
39 10 38 sseldi x 0 +∞ y 0 +∞ z 0 +∞ y
40 simpr x 0 +∞ y 0 +∞ z 0 +∞ z 0 +∞
41 10 40 sseldi x 0 +∞ y 0 +∞ z 0 +∞ z
42 37 39 41 adddid x 0 +∞ y 0 +∞ z 0 +∞ x y + z = x y + x z
43 37 39 41 adddird x 0 +∞ y 0 +∞ z 0 +∞ x + y z = x z + y z
44 42 43 jca x 0 +∞ y 0 +∞ z 0 +∞ x y + z = x y + x z x + y z = x z + y z
45 44 ralrimiva x 0 +∞ y 0 +∞ z 0 +∞ x y + z = x y + x z x + y z = x z + y z
46 45 ralrimiva x 0 +∞ y 0 +∞ z 0 +∞ x y + z = x y + x z x + y z = x z + y z
47 10 sseli x 0 +∞ x
48 47 mul02d x 0 +∞ 0 x = 0
49 47 mul01d x 0 +∞ x 0 = 0
50 46 48 49 jca32 x 0 +∞ y 0 +∞ z 0 +∞ x y + z = x y + x z x + y z = x z + y z 0 x = 0 x 0 = 0
51 50 rgen x 0 +∞ y 0 +∞ z 0 +∞ x y + z = x y + x z x + y z = x z + y z 0 x = 0 x 0 = 0
52 5 24 ressbas2 0 +∞ 0 +∞ = Base fld 𝑠 0 +∞
53 10 52 ax-mp 0 +∞ = Base fld 𝑠 0 +∞
54 cnfldex fld V
55 ovex 0 +∞ V
56 5 22 mgpress fld V 0 +∞ V mulGrp fld 𝑠 0 +∞ = mulGrp fld 𝑠 0 +∞
57 54 55 56 mp2an mulGrp fld 𝑠 0 +∞ = mulGrp fld 𝑠 0 +∞
58 cnfldadd + = + fld
59 5 58 ressplusg 0 +∞ V + = + fld 𝑠 0 +∞
60 55 59 ax-mp + = + fld 𝑠 0 +∞
61 5 28 ressmulr 0 +∞ V × = fld 𝑠 0 +∞
62 55 61 ax-mp × = fld 𝑠 0 +∞
63 ringmnd fld Ring fld Mnd
64 1 63 ax-mp fld Mnd
65 0e0icopnf 0 0 +∞
66 cnfld0 0 = 0 fld
67 5 24 66 ress0g fld Mnd 0 0 +∞ 0 +∞ 0 = 0 fld 𝑠 0 +∞
68 64 65 10 67 mp3an 0 = 0 fld 𝑠 0 +∞
69 53 57 60 62 68 issrg fld 𝑠 0 +∞ SRing fld 𝑠 0 +∞ CMnd mulGrp fld 𝑠 0 +∞ Mnd x 0 +∞ y 0 +∞ z 0 +∞ x y + z = x y + x z x + y z = x z + y z 0 x = 0 x 0 = 0
70 7 35 51 69 mpbir3an fld 𝑠 0 +∞ SRing