Step |
Hyp |
Ref |
Expression |
1 |
|
cnring |
|
2 |
|
ringcmn |
|
3 |
1 2
|
ax-mp |
|
4 |
|
rege0subm |
|
5 |
|
eqid |
|
6 |
5
|
submcmn |
|
7 |
3 4 6
|
mp2an |
|
8 |
|
rge0ssre |
|
9 |
|
ax-resscn |
|
10 |
8 9
|
sstri |
|
11 |
|
1re |
|
12 |
|
0le1 |
|
13 |
|
ltpnf |
|
14 |
11 13
|
ax-mp |
|
15 |
|
0re |
|
16 |
|
pnfxr |
|
17 |
|
elico2 |
|
18 |
15 16 17
|
mp2an |
|
19 |
11 12 14 18
|
mpbir3an |
|
20 |
|
ge0mulcl |
|
21 |
20
|
rgen2 |
|
22 |
|
eqid |
|
23 |
22
|
ringmgp |
|
24 |
|
cnfldbas |
|
25 |
22 24
|
mgpbas |
|
26 |
|
cnfld1 |
|
27 |
22 26
|
ringidval |
|
28 |
|
cnfldmul |
|
29 |
22 28
|
mgpplusg |
|
30 |
25 27 29
|
issubm |
|
31 |
1 23 30
|
mp2b |
|
32 |
10 19 21 31
|
mpbir3an |
|
33 |
|
eqid |
|
34 |
33
|
submmnd |
|
35 |
32 34
|
ax-mp |
|
36 |
|
simpll |
|
37 |
10 36
|
sselid |
|
38 |
|
simplr |
|
39 |
10 38
|
sselid |
|
40 |
|
simpr |
|
41 |
10 40
|
sselid |
|
42 |
37 39 41
|
adddid |
|
43 |
37 39 41
|
adddird |
|
44 |
42 43
|
jca |
|
45 |
44
|
ralrimiva |
|
46 |
45
|
ralrimiva |
|
47 |
10
|
sseli |
|
48 |
47
|
mul02d |
|
49 |
47
|
mul01d |
|
50 |
46 48 49
|
jca32 |
|
51 |
50
|
rgen |
|
52 |
5 24
|
ressbas2 |
|
53 |
10 52
|
ax-mp |
|
54 |
|
cnfldex |
|
55 |
|
ovex |
|
56 |
5 22
|
mgpress |
|
57 |
54 55 56
|
mp2an |
|
58 |
|
cnfldadd |
|
59 |
5 58
|
ressplusg |
|
60 |
55 59
|
ax-mp |
|
61 |
5 28
|
ressmulr |
|
62 |
55 61
|
ax-mp |
|
63 |
|
ringmnd |
|
64 |
1 63
|
ax-mp |
|
65 |
|
0e0icopnf |
|
66 |
|
cnfld0 |
|
67 |
5 24 66
|
ress0g |
|
68 |
64 65 10 67
|
mp3an |
|
69 |
53 57 60 62 68
|
issrg |
|
70 |
7 35 51 69
|
mpbir3an |
|