Metamath Proof Explorer


Theorem rgen

Description: Generalization rule for restricted quantification. (Contributed by NM, 19-Nov-1994)

Ref Expression
Hypothesis rgen.1 x A φ
Assertion rgen x A φ

Proof

Step Hyp Ref Expression
1 rgen.1 x A φ
2 df-ral x A φ x x A φ
3 2 1 mpgbir x A φ