Metamath Proof Explorer


Theorem rgenw

Description: Generalization rule for restricted quantification. (Contributed by NM, 18-Jun-2014)

Ref Expression
Hypothesis rgenw.1 φ
Assertion rgenw x A φ

Proof

Step Hyp Ref Expression
1 rgenw.1 φ
2 1 a1i x A φ
3 2 rgen x A φ