Metamath Proof Explorer


Theorem rgrprc

Description: The class of 0-regular graphs is a proper class. (Contributed by AV, 27-Dec-2020)

Ref Expression
Assertion rgrprc g | g RegGraph 0 V

Proof

Step Hyp Ref Expression
1 rusgrrgr g RegUSGraph 0 g RegGraph 0
2 1 ss2abi g | g RegUSGraph 0 g | g RegGraph 0
3 rusgrprc g | g RegUSGraph 0 V
4 prcssprc g | g RegUSGraph 0 g | g RegGraph 0 g | g RegUSGraph 0 V g | g RegGraph 0 V
5 2 3 4 mp2an g | g RegGraph 0 V