Database
GRAPH THEORY
Undirected graphs
Regular graphs
rgrprc
Next ⟩
rgrprcx
Metamath Proof Explorer
Ascii
Unicode
Theorem
rgrprc
Description:
The class of 0-regular graphs is a proper class.
(Contributed by
AV
, 27-Dec-2020)
Ref
Expression
Assertion
rgrprc
⊢
g
|
g
RegGraph
0
∉
V
Proof
Step
Hyp
Ref
Expression
1
rusgrrgr
⊢
g
RegUSGraph
0
→
g
RegGraph
0
2
1
ss2abi
⊢
g
|
g
RegUSGraph
0
⊆
g
|
g
RegGraph
0
3
rusgrprc
⊢
g
|
g
RegUSGraph
0
∉
V
4
prcssprc
⊢
g
|
g
RegUSGraph
0
⊆
g
|
g
RegGraph
0
∧
g
|
g
RegUSGraph
0
∉
V
→
g
|
g
RegGraph
0
∉
V
5
2
3
4
mp2an
⊢
g
|
g
RegGraph
0
∉
V