Database
GRAPH THEORY
Undirected graphs
Regular graphs
rgrprcx
Next ⟩
rgrx0ndm
Metamath Proof Explorer
Ascii
Unicode
Theorem
rgrprcx
Description:
The class of 0-regular graphs is a proper class.
(Contributed by
AV
, 27-Dec-2020)
Ref
Expression
Assertion
rgrprcx
⊢
g
|
∀
v
∈
Vtx
⁡
g
VtxDeg
⁡
g
⁡
v
=
0
∉
V
Proof
Step
Hyp
Ref
Expression
1
rgrprc
⊢
g
|
g
RegGraph
0
∉
V
2
0xnn0
⊢
0
∈
ℕ
0
*
3
vex
⊢
g
∈
V
4
eqid
⊢
Vtx
⁡
g
=
Vtx
⁡
g
5
eqid
⊢
VtxDeg
⁡
g
=
VtxDeg
⁡
g
6
4
5
isrgr
⊢
g
∈
V
∧
0
∈
ℕ
0
*
→
g
RegGraph
0
↔
0
∈
ℕ
0
*
∧
∀
v
∈
Vtx
⁡
g
VtxDeg
⁡
g
⁡
v
=
0
7
3
2
6
mp2an
⊢
g
RegGraph
0
↔
0
∈
ℕ
0
*
∧
∀
v
∈
Vtx
⁡
g
VtxDeg
⁡
g
⁡
v
=
0
8
2
7
mpbiran
⊢
g
RegGraph
0
↔
∀
v
∈
Vtx
⁡
g
VtxDeg
⁡
g
⁡
v
=
0
9
8
bicomi
⊢
∀
v
∈
Vtx
⁡
g
VtxDeg
⁡
g
⁡
v
=
0
↔
g
RegGraph
0
10
9
abbii
⊢
g
|
∀
v
∈
Vtx
⁡
g
VtxDeg
⁡
g
⁡
v
=
0
=
g
|
g
RegGraph
0
11
neleq1
⊢
g
|
∀
v
∈
Vtx
⁡
g
VtxDeg
⁡
g
⁡
v
=
0
=
g
|
g
RegGraph
0
→
g
|
∀
v
∈
Vtx
⁡
g
VtxDeg
⁡
g
⁡
v
=
0
∉
V
↔
g
|
g
RegGraph
0
∉
V
12
10
11
ax-mp
⊢
g
|
∀
v
∈
Vtx
⁡
g
VtxDeg
⁡
g
⁡
v
=
0
∉
V
↔
g
|
g
RegGraph
0
∉
V
13
1
12
mpbir
⊢
g
|
∀
v
∈
Vtx
⁡
g
VtxDeg
⁡
g
⁡
v
=
0
∉
V