Metamath Proof Explorer


Theorem rgrprcx

Description: The class of 0-regular graphs is a proper class. (Contributed by AV, 27-Dec-2020)

Ref Expression
Assertion rgrprcx g | v Vtx g VtxDeg g v = 0 V

Proof

Step Hyp Ref Expression
1 rgrprc g | g RegGraph 0 V
2 0xnn0 0 0 *
3 vex g V
4 eqid Vtx g = Vtx g
5 eqid VtxDeg g = VtxDeg g
6 4 5 isrgr g V 0 0 * g RegGraph 0 0 0 * v Vtx g VtxDeg g v = 0
7 3 2 6 mp2an g RegGraph 0 0 0 * v Vtx g VtxDeg g v = 0
8 2 7 mpbiran g RegGraph 0 v Vtx g VtxDeg g v = 0
9 8 bicomi v Vtx g VtxDeg g v = 0 g RegGraph 0
10 9 abbii g | v Vtx g VtxDeg g v = 0 = g | g RegGraph 0
11 neleq1 g | v Vtx g VtxDeg g v = 0 = g | g RegGraph 0 g | v Vtx g VtxDeg g v = 0 V g | g RegGraph 0 V
12 10 11 ax-mp g | v Vtx g VtxDeg g v = 0 V g | g RegGraph 0 V
13 1 12 mpbir g | v Vtx g VtxDeg g v = 0 V