Metamath Proof Explorer


Theorem rgrprcx

Description: The class of 0-regular graphs is a proper class. (Contributed by AV, 27-Dec-2020)

Ref Expression
Assertion rgrprcx g|vVtxgVtxDeggv=0V

Proof

Step Hyp Ref Expression
1 rgrprc g|gRegGraph0V
2 0xnn0 00*
3 vex gV
4 eqid Vtxg=Vtxg
5 eqid VtxDegg=VtxDegg
6 4 5 isrgr gV00*gRegGraph000*vVtxgVtxDeggv=0
7 3 2 6 mp2an gRegGraph000*vVtxgVtxDeggv=0
8 2 7 mpbiran gRegGraph0vVtxgVtxDeggv=0
9 8 bicomi vVtxgVtxDeggv=0gRegGraph0
10 9 abbii g|vVtxgVtxDeggv=0=g|gRegGraph0
11 neleq1 g|vVtxgVtxDeggv=0=g|gRegGraph0g|vVtxgVtxDeggv=0Vg|gRegGraph0V
12 10 11 ax-mp g|vVtxgVtxDeggv=0Vg|gRegGraph0V
13 1 12 mpbir g|vVtxgVtxDeggv=0V