Metamath Proof Explorer


Theorem rgrprop

Description: The properties of a k-regular graph. (Contributed by Alexander van der Vekens, 8-Jul-2018) (Revised by AV, 26-Dec-2020)

Ref Expression
Hypotheses isrgr.v V = Vtx G
isrgr.d D = VtxDeg G
Assertion rgrprop G RegGraph K K 0 * v V D v = K

Proof

Step Hyp Ref Expression
1 isrgr.v V = Vtx G
2 isrgr.d D = VtxDeg G
3 df-rgr RegGraph = g k | k 0 * v Vtx g VtxDeg g v = k
4 3 bropaex12 G RegGraph K G V K V
5 1 2 isrgr G V K V G RegGraph K K 0 * v V D v = K
6 5 biimpd G V K V G RegGraph K K 0 * v V D v = K
7 4 6 mpcom G RegGraph K K 0 * v V D v = K