Metamath Proof Explorer


Theorem rgrx0ndm

Description: 0 is not in the domain of the potentially alternative definition of the sets of k-regular graphs for each extended nonnegative integer k. (Contributed by AV, 28-Dec-2020)

Ref Expression
Hypothesis rgrx0ndm.u R = k 0 * g | v Vtx g VtxDeg g v = k
Assertion rgrx0ndm 0 dom R

Proof

Step Hyp Ref Expression
1 rgrx0ndm.u R = k 0 * g | v Vtx g VtxDeg g v = k
2 rgrprcx g | v Vtx g VtxDeg g v = 0 V
3 2 neli ¬ g | v Vtx g VtxDeg g v = 0 V
4 3 intnan ¬ 0 0 * g | v Vtx g VtxDeg g v = 0 V
5 df-nel 0 dom R ¬ 0 dom R
6 eqeq2 k = 0 VtxDeg g v = k VtxDeg g v = 0
7 6 ralbidv k = 0 v Vtx g VtxDeg g v = k v Vtx g VtxDeg g v = 0
8 7 abbidv k = 0 g | v Vtx g VtxDeg g v = k = g | v Vtx g VtxDeg g v = 0
9 8 eleq1d k = 0 g | v Vtx g VtxDeg g v = k V g | v Vtx g VtxDeg g v = 0 V
10 1 dmmpt dom R = k 0 * | g | v Vtx g VtxDeg g v = k V
11 9 10 elrab2 0 dom R 0 0 * g | v Vtx g VtxDeg g v = 0 V
12 5 11 xchbinx 0 dom R ¬ 0 0 * g | v Vtx g VtxDeg g v = 0 V
13 4 12 mpbir 0 dom R