Database
BASIC ALGEBRAIC STRUCTURES
Rings
Ring homomorphisms
rhm1
Next ⟩
idrhm
Metamath Proof Explorer
Ascii
Unicode
Theorem
rhm1
Description:
Ring homomorphisms are required to fix 1.
(Contributed by
Stefan O'Rear
, 8-Mar-2015)
Ref
Expression
Hypotheses
rhm1.o
⊢
1
˙
=
1
R
rhm1.n
⊢
N
=
1
S
Assertion
rhm1
⊢
F
∈
R
RingHom
S
→
F
⁡
1
˙
=
N
Proof
Step
Hyp
Ref
Expression
1
rhm1.o
⊢
1
˙
=
1
R
2
rhm1.n
⊢
N
=
1
S
3
eqid
⊢
mulGrp
R
=
mulGrp
R
4
eqid
⊢
mulGrp
S
=
mulGrp
S
5
3
4
rhmmhm
⊢
F
∈
R
RingHom
S
→
F
∈
mulGrp
R
MndHom
mulGrp
S
6
eqid
⊢
0
mulGrp
R
=
0
mulGrp
R
7
eqid
⊢
0
mulGrp
S
=
0
mulGrp
S
8
6
7
mhm0
⊢
F
∈
mulGrp
R
MndHom
mulGrp
S
→
F
⁡
0
mulGrp
R
=
0
mulGrp
S
9
5
8
syl
⊢
F
∈
R
RingHom
S
→
F
⁡
0
mulGrp
R
=
0
mulGrp
S
10
3
1
ringidval
⊢
1
˙
=
0
mulGrp
R
11
10
fveq2i
⊢
F
⁡
1
˙
=
F
⁡
0
mulGrp
R
12
4
2
ringidval
⊢
N
=
0
mulGrp
S
13
9
11
12
3eqtr4g
⊢
F
∈
R
RingHom
S
→
F
⁡
1
˙
=
N