Metamath Proof Explorer


Theorem rhm1

Description: Ring homomorphisms are required to fix 1. (Contributed by Stefan O'Rear, 8-Mar-2015)

Ref Expression
Hypotheses rhm1.o 1 ˙ = 1 R
rhm1.n N = 1 S
Assertion rhm1 F R RingHom S F 1 ˙ = N

Proof

Step Hyp Ref Expression
1 rhm1.o 1 ˙ = 1 R
2 rhm1.n N = 1 S
3 eqid mulGrp R = mulGrp R
4 eqid mulGrp S = mulGrp S
5 3 4 rhmmhm F R RingHom S F mulGrp R MndHom mulGrp S
6 eqid 0 mulGrp R = 0 mulGrp R
7 eqid 0 mulGrp S = 0 mulGrp S
8 6 7 mhm0 F mulGrp R MndHom mulGrp S F 0 mulGrp R = 0 mulGrp S
9 5 8 syl F R RingHom S F 0 mulGrp R = 0 mulGrp S
10 3 1 ringidval 1 ˙ = 0 mulGrp R
11 10 fveq2i F 1 ˙ = F 0 mulGrp R
12 4 2 ringidval N = 0 mulGrp S
13 9 11 12 3eqtr4g F R RingHom S F 1 ˙ = N