Step |
Hyp |
Ref |
Expression |
1 |
|
rhmcomulmpl.p |
|
2 |
|
rhmcomulmpl.q |
|
3 |
|
rhmcomulmpl.b |
|
4 |
|
rhmcomulmpl.c |
|
5 |
|
rhmcomulmpl.1 |
|
6 |
|
rhmcomulmpl.2 |
|
7 |
|
rhmcomulmpl.h |
|
8 |
|
rhmcomulmpl.f |
|
9 |
|
rhmcomulmpl.g |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
10 11
|
rhmf |
|
13 |
7 12
|
syl |
|
14 |
|
eqid |
|
15 |
|
rhmrcl1 |
|
16 |
7 15
|
syl |
|
17 |
1 10 3 14 8
|
mplelf |
|
18 |
1 10 3 14 9
|
mplelf |
|
19 |
14 16 17 18
|
rhmpsrlem2 |
|
20 |
13 19
|
cofmpt |
|
21 |
|
eqid |
|
22 |
16
|
ringcmnd |
|
23 |
22
|
adantr |
|
24 |
|
rhmrcl2 |
|
25 |
7 24
|
syl |
|
26 |
25
|
ringgrpd |
|
27 |
26
|
grpmndd |
|
28 |
27
|
adantr |
|
29 |
|
ovex |
|
30 |
29
|
rabex |
|
31 |
30
|
rabex |
|
32 |
31
|
a1i |
|
33 |
|
rhmghm |
|
34 |
|
ghmmhm |
|
35 |
7 33 34
|
3syl |
|
36 |
35
|
adantr |
|
37 |
|
eqid |
|
38 |
16
|
ad2antrr |
|
39 |
|
elrabi |
|
40 |
17
|
ffvelcdmda |
|
41 |
39 40
|
sylan2 |
|
42 |
41
|
adantlr |
|
43 |
18
|
ad2antrr |
|
44 |
|
eqid |
|
45 |
14 44
|
psrbagconcl |
|
46 |
|
elrabi |
|
47 |
45 46
|
syl |
|
48 |
47
|
adantll |
|
49 |
43 48
|
ffvelcdmd |
|
50 |
10 37 38 42 49
|
ringcld |
|
51 |
14 16 17 18
|
rhmpsrlem1 |
|
52 |
10 21 23 28 32 36 50 51
|
gsummptmhm |
|
53 |
7
|
ad2antrr |
|
54 |
|
eqid |
|
55 |
10 37 54
|
rhmmul |
|
56 |
53 42 49 55
|
syl3anc |
|
57 |
17
|
ad2antrr |
|
58 |
39
|
adantl |
|
59 |
57 58
|
fvco3d |
|
60 |
43 48
|
fvco3d |
|
61 |
59 60
|
oveq12d |
|
62 |
56 61
|
eqtr4d |
|
63 |
62
|
mpteq2dva |
|
64 |
63
|
oveq2d |
|
65 |
52 64
|
eqtr3d |
|
66 |
65
|
mpteq2dva |
|
67 |
20 66
|
eqtrd |
|
68 |
1 3 37 5 14 8 9
|
mplmul |
|
69 |
68
|
coeq2d |
|
70 |
1 2 3 4 35 8
|
mhmcompl |
|
71 |
1 2 3 4 35 9
|
mhmcompl |
|
72 |
2 4 54 6 14 70 71
|
mplmul |
|
73 |
67 69 72
|
3eqtr4d |
|